
ՏԵՂԵԿԱՏՎԱԿԱՆ ՏԵԽՆՈԼՈԳԻԱՆԵՐ

133

DEEP ANALYSIS OF ATTACKS ON SMART CONTRACTS: VULNERABILITIES,

METHODS AND COUNTERMEASURES

https://doi.org/10.59982/18294359-23.14-da-15

Gevorg Margarov

NPUA, Institute of ITTE, Head of ISSD Department,

Ph.D. in Technical Sciences, Professor

mgi@polytechnic.am

Narek Naltakyan

NPUA, ITTE Institute, ISSD Chair, MA Student

nareknaltakyan1@gmail.com

Vahagn Gishyan

NPUA, ITTE Institute, Chair of Microelectronic Circuits and Sistems, MA Student

vahagn.gishyan.a@gmail.com

Aghasi Seyranyan

NPUA, ITTE Institute, ISSD Chair, MA Student

aghasi.seyranyan@gmail.com

Aleksandr Martirosyan

NPUA, ITTE Institute, ISSD Chair, MA Student

Alexandr.martirosyan2000@gmail.com

Abstract

Smart contracts are self-executing contracts that have gained significant prominence with the

advent of blockchain technology. The unique aspect of these contracts is that the terms of the agreement

are directly written into the code, eliminating the need for intermediaries and enabling a high degree

of automation. These features have made them particularly attractive in the realm of cryptocurrencies

and decentralized applications. However, the inherent complexities associated with the design and

implementation of smart contracts have led to a host of vulnerabilities. These vulnerabilities can be

exploited by attackers, posing significant security risks. In some cases, these risks have resulted in

substantial financial losses, highlighting the need for caution and vigilance. This paper provides a

comprehensive overview of the various attack vectors and techniques that attackers can use to exploit

these vulnerabilities. It also outlines a range of countermeasures that can be employed to mitigate these

risks. The objective of this paper is to serve as a valuable resource for researchers, developers, and

users alike. It aims to deepen their understanding of the risks associated with smart contracts and

provide guidance on how to mitigate these risks effectively.

Keywords: Smart contract, vulnerabilities, attack techniques, Ethereum, blockchain security,

decentralized applications.

Introduction

Smart contracts are programmable, self-

executing agreements that operate on a decentralized

digital platform, most commonly a blockchain. The

concept of smart contracts was first introduced by

computer scientist and legal scholar Nick Szabo in

1994. With the advent of Ethereum in 2015, smart

contracts found widespread use in creating

decentralized applications (DApps) and

cryptocurrencies [Rosic]. They are designed to

enable trustless, transparent, and secure transactions

between parties without the need for intermediaries,

such as banks, legal firms, or notaries. Despite their

potential to revolutionize various sectors, including

http://eua-collection.am/hy/644-2/
http://eua-collection.am/hy/644-2/
mailto:mgi@polytechnic.am
mailto:nareknaltakyan1@gmail.com
mailto:vahagn.gishyan.a@gmail.com
mailto:aghasi.seyranyan@gmail.com
mailto:Alexandr.martirosyan2000@gmail.com

ՏԵՂԵԿԱՏՎԱԿԱՆ ՏԵԽՆՈԼՈԳԻԱՆԵՐ

134

finance, supply chain, real estate, and governance,

smart contracts are not immune to security issues.

The complex nature of their design and

implementation has led to vulnerabilities that can be

exploited by malicious actors. These vulnerabilities

have resulted in significant financial losses and

undermined trust in the technology. As smart

contracts continue to grow in popularity,

understanding and mitigating these vulnerabilities

become increasingly important. This paper aims to

provide a comprehensive analysis of the different

attack vectors, techniques, and countermeasures

relevant to smart contracts. This paper focuses on the

vulnerabilities and attacks that are specific to smart

contracts, particularly those deployed on the

Ethereum platform, which has the largest ecosystem

of smart contracts and DApps [Rosic]. However,

many of the principles and concepts discussed are

applicable to other platforms and implementations.

The paper examines various attack techniques, case

studies of high-profile incidents, and potential

countermeasures to mitigate risks associated with

smart contracts.

Smart Contracts

A smart contract is a self-executing contract in

which the terms of the agreement between buyer and

seller are directly written into code. They are stored

on a decentralized digital platform, typically a

blockchain, and automatically execute predefined

actions when specific conditions are met [Binance].

By removing the need for intermediaries, smart

contracts can reduce costs, increase efficiency, and

enhance security for various transactions. Smart

contracts can be classified into several types,

depending on their functionality and the platform on

which they are built:

⚫ Financial smart contracts: These contracts

facilitate financial transactions, such as token

creation, crowdfunding, lending, and derivatives

trading. Examples include ERC-20 tokens and

decentralized finance (DeFi) platforms.

⚫ Non-financial smart contracts: These

contracts are used for non-financial purposes, such

as identity management, voting systems, supply

chain management, and intellectual property rights

management.

⚫ Platform-specific smart contracts: Some

smart contracts are designed to function specifically

on a certain platform, like Ethereum, Cardano, or

Polkadot.

⚫ Platform-agnostic smart contracts: These

contracts can be deployed and executed on multiple

platforms, providing greater flexibility and

interoperability.

Smart Contract Vulnerabilities

Smart contract vulnerabilities arise from flaws

in design, implementation, or interaction with the

underlying blockchain. The following are some of

the most common vulnerabilities:

⚫ Reentrancy attacks: Reentrancy attacks

occur when an external contract is called before the

state of the original contract is updated. This allows

the attacker to repeatedly call the external contract,

draining the original contract's funds. The DAO

hack in 2016 is a well-known example of a

reentrancy attack [Toshendra].

⚫ Arithmetic overflows and underflows:

Arithmetic overflows occur when an operation

results in a value larger than the maximum value that

can be stored in a given data type, causing the value

to wrap around. Underflows happen when an

operation results in a value smaller than the

minimum value, causing the value to wrap around in

the opposite direction. These vulnerabilities can be

exploited to manipulate token balances or bypass

certain conditions in a smart contract.

⚫ Timestamp manipulations: Smart contracts

often rely on block timestamps for time-based

conditions, such as token vesting or auction end

times. However, miners have some influence over

block timestamps, which can be manipulated to

favor certain outcomes or give the miner an unfair

advantage.

⚫ Short address attacks: Short address attacks

exploit the fact that some Ethereum clients do not

validate the length of input data before processing

transactions. Attackers can send transactions with a

deliberately shortened address, causing the smart

contract to interpret the remaining bytes as part of

the transaction data. This can lead to unintended

transfers of tokens or other assets.

⚫ Uninitialized storage pointers: Smart

contracts use storage pointers to reference data

ՏԵՂԵԿԱՏՎԱԿԱՆ ՏԵԽՆՈԼՈԳԻԱՆԵՐ

135

stored on the blockchain. If a storage pointer is not

properly initialized, it can point to unintended

locations, allowing an attacker to manipulate or

overwrite critical data.

⚫ Delegatecall attacks: The delegatecall

function in Ethereum allows a contract to call

another contract's function in the context of the

calling contract. This can be exploited by an attacker

who gains control over the called contract, enabling

them to modify the state of the calling contract in

malicious ways.

⚫ Front-running attacks: Front-running attacks

occur when an attacker observes a pending

transaction and submits their own transaction with a

higher gas price to ensure it is executed before the

original transaction. This can be used to manipulate

the outcome of trades, auctions, or other time-

sensitive operations in a smart contract.

Attack Techniques and Case Studies

This section examines specific attack

techniques and notable incidents that have occurred

in the smart contract ecosystem.

⚫ The DAO hack: The DAO (Decentralized

Autonomous Organization) was a venture capital

fund built on Ethereum in 2016. It suffered a major

reentrancy attack, where the attacker exploited a

vulnerability in the contract's withdrawal function to

drain over 3.6 million Ether (worth around $50

million at the time). The aftermath of the attack led

to a controversial hard fork in the Ethereum network,

resulting in the creation of Ethereum Classic

[Toshendra].

⚫ Parity wallet vulnerability In 2017, a

vulnerability in the Parity multisig wallet library

contract was exploited by an attacker who managed

to steal over 150,000 Ether (worth around $30

million at the time). The vulnerability was related to

an uninitialized owner variable in the library

contract, which allowed the attacker to take

ownership of the contract and subsequently drain the

funds [OpenZeppelin].

⚫ Bancor protocol attack In 2018, the Bancor

protocol, a decentralized exchange platform,

suffered a security breach where an attacker

exploited a permission flaw in one of the smart

contracts. The attacker was able to call the contract's

internal transfer function and bypass the token's

standard ERC20 transfer restrictions. This resulted

in the theft of over $23 million worth of tokens

[Apriorit].

⚫ SpankChain attack In 2018, SpankChain, an

adult entertainment platform built on Ethereum, lost

around $38,000 in Ether due to a reentrancy attack.

The attacker exploited a vulnerability in the

platform's payment channel contract, which allowed

them to repeatedly call the contract's withdrawal

function and drain funds [Roan].

⚫ dForce exploit In 2020, dForce, a DeFi

platform, suffered a loss of around $25 million due

to an attack exploiting a vulnerability in the

platform's lending protocol. The attacker utilized a

combination of reentrancy and economic exploits,

where they artificially inflated the value of a specific

token and then used it as collateral to borrow other

assets [Binance].

⚫ bZx flash loan attack In 2020, bZx, a DeFi

lending platform, was targeted in a series of attacks

that resulted in a loss of over $1 million. The

attackers utilized flash loans, a feature that allows

users to borrow assets without collateral as long as

they are returned within the same transaction. The

attackers used these loans to manipulate the price of

specific tokens on decentralized exchanges and

profit from the price discrepancies in the bZx

platform [CoinDesk].

Countermeasures

To mitigate the risk of smart contract attacks,

several countermeasures and best practices founded

by us can be adopted during the development and

deployment phases.

⚫ Delegatecall is a powerful feature of the

Ethereum platform that allows contracts to reuse

code and modularize their functionality. It works by

executing the code of the target contract in the

context of the calling contract, which means that the

target contract has access to the calling contract's

storage, but its own storage is not affected. However,

while delegatecall can greatly simplify contract

development, it also introduces potential security

vulnerabilities. When a contract executes a function

using delegatecall, it essentially allows the target

contract to execute any code it wants with the calling

contract's state. This can lead to unexpected code

execution and unintended changes to the calling

ՏԵՂԵԿԱՏՎԱԿԱՆ ՏԵԽՆՈԼՈԳԻԱՆԵՐ

136

contract's state, which can result in security breaches

and loss of funds. For example, if contract A has a

function that performs a transfer of Ether, and

contract B calls that function using delegatecall,

contract B's storage will be used for the execution of

the code, but the transfer will still be made from

contract A's account. This means that anyone who

can call the function in contract B can potentially

manipulate the transfer and steal funds from contract

A. To prevent these types of vulnerabilities, it is

important to carefully review and test any contracts

that use delegatecall, and to ensure that they are

designed with security in mind. This includes

implementing proper access controls, auditing any

external contracts that are used with delegatecall,

and limiting the functions that can be called using

delegatecall to only those that are essential for the

contract's functionality. By following best practices

and being diligent in their code development and

testing, developers can use delegatecall safely and

effectively to build more efficient and modular

contracts.

⚫ Reentrancy is a common software

development technique that allows a function to be

called repeatedly before the original function

execution is finished. While this technique can be

useful for certain use cases, it also introduces

potential security vulnerabilities, particularly in

smart contract development. In a reentrancy attack,

an attacker takes advantage of unprotected external

calls to repeatedly call a function and drain all of the

funds in a contract. This can be a particularly

damaging exploit, leading to significant financial

losses for the contract owner. To prevent reentrancy

attacks, developers can implement a reentrancy

guard, which is a modifier that causes execution to

fail whenever a reentrancy act is detected. The guard

prevents more than one function from being

executed at a time by locking the contract, thereby

protecting against reentrancy attacks. For example,

a simple reentrancy guard can be implemented as

follows:

Fig. 1

Reentrancy modifier example in solidity smart contract programming language.

In this example, the noReentrancy modifier sets

a locked flag to prevent multiple function executions

and reverts execution if a reentrancy act is detected.

The vulnerableFunction function uses the

noReentrancy modifier to ensure that it can only be

called once at a time, protecting against reentrancy

attacks. By using a reentrancy guard, developers can

help secure their smart contracts against reentrancy

ՏԵՂԵԿԱՏՎԱԿԱՆ ՏԵԽՆՈԼՈԳԻԱՆԵՐ

137

attacks and ensure the integrity of their contract's

functionality and funds.

⚫ Solidity is a popular programming language

used for smart contract development on the

Ethereum blockchain. One of its global variables,

tx.origin, returns the address of the original sender

of a transaction. However, using tx.origin for

authentication purposes can be dangerous and

expose a contract to compromise if an authorized

account calls into a malicious contract. To prevent

tx.origin attacks, developers should avoid using

tx.origin for authentication and instead use

msg.sender. msg.sender returns the address of the

direct caller of the function, which is less susceptible

to manipulation by malicious contracts. One key

difference between tx.origin and msg.sender is that

msg.sender can be a contract, while tx.origin can

never be a contract. This means that msg.sender can

be used to implement more complex authorization

schemes, such as multi-signature wallets or contract-

based access controls. For example, consider the

following contract that uses msg.sender for

authentication:

Fig. 2

Authentication example with msg.sender global variable.

In this contract, the owner variable is set to

msg.sender in the constructor, which ensures that

only the address that deployed the contract can call

the doSomething function. By using msg.sender

instead of tx.origin, the contract is more secure and

less susceptible to tx.origin attacks. In summary,

developers should avoid using tx.origin for

authentication purposes and instead use msg.sender.

By doing so, they can help ensure the security of

their contracts and protect against potential

vulnerabilities.

⚫ When choosing a visibility modifier for a

function, it's important to consider the intended use

and potential security implications. Failure to

properly utilize visibility modifiers can lead to

unintended state changes and make a contract

vulnerable to attacks. Here's a brief explanation of

each visibility modifier: Public: A public function

can be accessed and called by any account or

contract. This includes the main contract, derived

contracts, and third-party contracts. Public functions

are generally used to expose functionality to other

contracts or external users. External: An external

function can only be called by an external account or

contract. This means that the function cannot be

called by the main contract or any derived contracts.

External functions are often used for utility functions

that don't require access to the contract's state.

Internal: An internal function can be called by the

main contract and any of its derived contracts. This

ՏԵՂԵԿԱՏՎԱԿԱՆ ՏԵԽՆՈԼՈԳԻԱՆԵՐ

138

means that the function is not accessible to external

accounts or contracts. Internal functions are

commonly used to implement contract functionality

that is not intended for external use. Private: A

private function can only be called by the main

contract in which it was specified. This means that

the function is not accessible to derived contracts or

external accounts or contracts. Private functions are

typically used for internal implementation details

that should not be exposed to external users. It's

important to note that functions in Solidity are by

default set to public visibility. Developers should

carefully consider which visibility modifier is

appropriate for each function and explicitly set the

visibility to the desired level. This can help prevent

unintended state changes and ensure the security of

the contract.

⚫ In the Ethereum blockchain, block

timestamps are commonly used for various purposes

such as generating random numbers, locking funds

for a specific time period, and implementing time-

dependent conditional statements in smart contracts.

However, block timestamps are not always reliable

and can be subject to manipulation by validators,

making it risky to use them in smart contracts.

Validators have the ability to slightly alter

timestamps, which can lead to inconsistencies and

unpredictable behavior in smart contracts that rely

on them. This can result in security vulnerabilities

and financial losses for contract users. While it's

possible to estimate the time difference between

events using block.number and the average block

time, relying solely on block timestamps for time-

dependent operations in smart contracts is not

recommended. Instead, developers should consider

using alternative solutions such as block hashes or

external time sources. For example, instead of using

block timestamps to generate random numbers,

developers can use block hashes to ensure a more

secure and reliable source of entropy. Similarly,

instead of using block timestamps for time-

dependent conditional statements, developers can

use external time sources such as an oracle or a

trusted timestamping service. In summary, while

block timestamps can be useful in smart contract

development, their use can introduce potential

security vulnerabilities. Developers should be aware

of the risks associated with block timestamps and

consider alternative solutions for time-dependent

operations to ensure the security and reliability of

their smart contracts.

⚫ In Solidity versions prior to 0.8.0, integers

were not wrapped, meaning that they would

automatically roll over to a lower or higher number

when they reached their maximum or minimum

value. This behavior could cause unexpected results

in code that relied on integer overflow or underflow.

For example, if you decremented 0 by 1 (0 - 1) on an

unsigned integer, the result would be the maximum

value of that integer type instead of -1 or an error.

This is because the integer would wrap around to its

maximum value after underflowing. To avoid

unexpected behavior and ensure the correctness of

their code, developers should be aware of the

potential risks associated with integer overflow and

underflow and take steps to prevent them. One way

to prevent integer overflow and underflow is to use

the SafeMath library, which provides safe arithmetic

operations for integers. For example, here's how you

can use the SafeMath library to subtract 1 from 0:

ՏԵՂԵԿԱՏՎԱԿԱՆ ՏԵԽՆՈԼՈԳԻԱՆԵՐ

139

Fig. 3

SafeMath library usage example for solidit version 0.8.0.

In this example, the SafeMath library's sub

function is used to subtract 1 from an unsigned

integer x. The function checks for underflow and

throws an exception if it occurs, preventing

unexpected results. By using safe arithmetic

operations and avoiding the risks associated with

integer overflow and underflow, developers can

ensure the correctness and security of their smart

contracts.

Conclusion

This paper has provided a comprehensive

overview of smart contract vulnerabilities, attack

techniques, and countermeasures. We have

discussed common vulnerabilities, such as

reentrancy attacks, arithmetic overflows, and

timestamp manipulation. We also examined notable

incidents like the DAO hack, Parity wallet

vulnerability, and bZx flash loan attack, illustrating

the real-world consequences of these vulnerabilities.

The analysis presented in this paper highlights the

importance of a security-first mindset for smart

contract developers and users. By understanding the

various attack vectors and implementing the

recommended countermeasures, the risk of smart

contract attacks can be significantly reduced.

Developers should employ best practices, such as

formal verification, static analysis, and fuzz testing,

to identify and address vulnerabilities before

deployment. Users should be cautious when

interacting with smart contracts and consider the

security measures implemented by developers. As

the adoption of smart contracts continues to grow,

ensuring their security becomes increasingly

important. Future research should focus on

enhancing security analysis tools, developing novel

mitigation techniques, and exploring the potential of

AI and machine learning for improving smart

contract security. Additionally, as the blockchain

ecosystem evolves, addressing challenges related to

interoperability, privacy, and scalability will be

crucial for the successful implementation and

widespread adoption of smart contracts.

ՏԵՂԵԿԱՏՎԱԿԱՆ ՏԵԽՆՈԼՈԳԻԱՆԵՐ

140

References

1. A. Rosic, What is Blockchain Technology? A Step-by-Step Guide For Beginners, Jul. 2016, Accessed

24 Feb. 2023, https://blockgeeks.com/guides/what-is-blockchain-technology/.

2. A. Rosic, What is Ethereum?, Oct. 2016, https://blockgeeks.com/guides/ethereum/.

3. Binance, What Are Smart Contracts?, Sep. 16, 2019, Accessed 05 March 2023,

https://academy.binance.com/en/articles/what-are-smart-contracts?ref=HDYAHEES.

4. Toshendra Kumar Sharma, Details Of The DAO Hacking In Ethereum In 2016, Oct. 2022, Accessed

08 March 2023,

https://www.blockchain-council.org/dao/details-of-the-dao-hacking-in-ethereum-in-2016/.

5. Open Zeppelin, The Parity Wallet Hack Explained, July 19 2017, Accessed 09 March 2023,

https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/.

6. Apriorit, Blockchain Vulnerabilites: Bancor Exchange Hack, Aug. 16, 2018, Accessed 09 March

2023,https://www.apriorit.com/dev-blog/554-bancor-exchange-

hack#:~:text=On%20July%209%2C%202018%2C%20the,ether%2C%20to%20a%20personal%20acc

ount.

7. Alex Roan, How Spankchain Got Hacked, Mar. 27 2020, Accessed 15 March 2023,

https://medium.com/swlh/how-spankchain-got-hacked-af65b933393c.

8. Binance, DForce Confirms the Return of Exploited $3.65m to Their Vaults, Feb. 13 2023, Accessed

15 March 2023, https://www.binance.com/en/feed/post/216587.

9. CoinDesk, The DeFi 'Flash Loan' Attack That Changed Everything, Sep. 13, Accessed 20 March 2023,

https://www.coindesk.com/tech/2020/02/27/the-defi-flash-loan-attack-that-changed-everything/

Ներկայ ացվել է՝

04.04.2023թ. Ուղարկվել է

գրախոսման՝ 05.05.2023թ.

http://www.blockchain-council.org/dao/details-of-the-dao-hacking-in-ethereum-in-2016/
http://www.blockchain-council.org/dao/details-of-the-dao-hacking-in-ethereum-in-2016/
http://www.apriorit.com/dev-blog/554-bancor-exchange-
http://www.binance.com/en/feed/post/216587
http://www.coindesk.com/tech/2020/02/27/the-defi-flash-loan-attack-that-changed-everything/

	https://doi.org/10.59982/18294359-23.14-da-15
	Narek Naltakyan
	Vahagn Gishyan
	Aghasi Seyranyan
	Aleksandr Martirosyan
	Abstract
	Introduction
	Smart Contracts
	Smart Contract Vulnerabilities
	Attack Techniques and Case Studies
	Countermeasures
	Fig. 1
	Fig. 2
	Fig. 3
	Conclusion
	References

