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Abstract 

Smart contracts are self-executing contracts that have gained significant prominence with the 

advent of blockchain technology. The unique aspect of these contracts is that the terms of the agreement 

are directly written into the code, eliminating the need for intermediaries and enabling a high degree 

of automation. These features have made them particularly attractive in the realm of cryptocurrencies 

and decentralized applications. However, the inherent complexities associated with the design and 

implementation of smart contracts have led to a host of vulnerabilities. These vulnerabilities can be 

exploited by attackers, posing significant security risks. In some cases, these risks have resulted in 

substantial financial losses, highlighting the need for caution and vigilance. This paper provides a 

comprehensive overview of the various attack vectors and techniques that attackers can use to exploit 

these vulnerabilities. It also outlines a range of countermeasures that can be employed to mitigate these 

risks. The objective of this paper is to serve as a valuable resource for researchers, developers, and 

users alike. It aims to deepen their understanding of the risks associated with smart contracts and 

provide guidance on how to mitigate these risks effectively. 

 
Keywords: Smart contract, vulnerabilities, attack techniques, Ethereum, blockchain security, 

decentralized applications. 
 

Introduction 

Smart contracts are programmable, self- 

executing agreements that operate on a decentralized 

digital platform, most commonly a blockchain. The 

concept of smart contracts was first introduced by 

computer scientist and legal scholar Nick Szabo in 

1994. With the advent of Ethereum in 2015, smart 

contracts found widespread use in creating 

decentralized applications (DApps) and 

cryptocurrencies [Rosic]. They are designed to 

enable trustless, transparent, and secure transactions 

between parties without the need for intermediaries, 

such as banks, legal firms, or notaries. Despite their 

potential to revolutionize various sectors, including 
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finance, supply chain, real estate, and governance, 

smart contracts are not immune to security issues. 

The complex nature of their design and 

implementation has led to vulnerabilities that can be 

exploited by malicious actors. These vulnerabilities 

have resulted in significant financial losses and 

undermined trust in the technology. As smart 

contracts continue to grow in popularity, 

understanding and mitigating these vulnerabilities 

become increasingly important. This paper aims to 

provide a comprehensive analysis of the different 

attack vectors, techniques, and countermeasures 

relevant to smart contracts. This paper focuses on the 

vulnerabilities and attacks that are specific to smart 

contracts, particularly those deployed on the 

Ethereum platform, which has the largest ecosystem 

of smart contracts and DApps [Rosic]. However, 

many of the principles and concepts discussed are 

applicable to other platforms and implementations. 

The paper examines various attack techniques, case 

studies of high-profile incidents, and potential 

countermeasures to mitigate risks associated with 

smart contracts. 

 
Smart Contracts 

A smart contract is a self-executing contract in 

which the terms of the agreement between buyer and 

seller are directly written into code. They are stored 

on a decentralized digital platform, typically a 

blockchain, and automatically execute predefined 

actions when specific conditions are met [Binance]. 

By removing the need for intermediaries, smart 

contracts can reduce costs, increase efficiency, and 

enhance security for various transactions. Smart 

contracts can be classified into several types, 

depending on their functionality and the platform on 

which they are built: 

⚫ Financial smart contracts: These contracts 

facilitate financial transactions, such as token 

creation, crowdfunding, lending, and derivatives 

trading. Examples include ERC-20 tokens and 

decentralized finance (DeFi) platforms. 

⚫ Non-financial  smart  contracts:  These 

contracts are used for non-financial purposes, such 

as identity management, voting systems, supply 

chain management, and intellectual property rights 

management. 

⚫ Platform-specific smart contracts: Some 

smart contracts are designed to function specifically 

on a certain platform, like Ethereum, Cardano, or 

Polkadot. 

⚫ Platform-agnostic smart contracts: These 

contracts can be deployed and executed on multiple 

platforms, providing greater flexibility and 

interoperability. 

 
Smart Contract Vulnerabilities 

Smart contract vulnerabilities arise from flaws 

in design, implementation, or interaction with the 

underlying blockchain. The following are some of 

the most common vulnerabilities: 

⚫ Reentrancy  attacks:  Reentrancy  attacks 

occur when an external contract is called before the 

state of the original contract is updated. This allows 

the attacker to repeatedly call the external contract, 

draining the original contract's funds. The DAO 

hack in 2016 is a well-known example of a 

reentrancy attack [Toshendra]. 

⚫ Arithmetic  overflows  and  underflows: 

Arithmetic overflows occur when an operation 

results in a value larger than the maximum value that 

can be stored in a given data type, causing the value 

to wrap around. Underflows happen when an 

operation results in a value smaller than the 

minimum value, causing the value to wrap around in 

the opposite direction. These vulnerabilities can be 

exploited to manipulate token balances or bypass 

certain conditions in a smart contract. 

⚫ Timestamp manipulations: Smart contracts 

often rely on block timestamps for time-based 

conditions, such as token vesting or auction end 

times. However, miners have some influence over 

block timestamps, which can be manipulated to 

favor certain outcomes or give the miner an unfair 

advantage. 

⚫ Short address attacks: Short address attacks 

exploit the fact that some Ethereum clients do not 

validate the length of input data before processing 

transactions. Attackers can send transactions with a 

deliberately shortened address, causing the smart 

contract to interpret the remaining bytes as part of 

the transaction data. This can lead to unintended 

transfers of tokens or other assets. 

⚫ Uninitialized  storage  pointers:  Smart 

contracts use storage pointers to reference data 
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stored on the blockchain. If a storage pointer is not 

properly initialized, it can point to unintended 

locations, allowing an attacker to manipulate or 

overwrite critical data. 

⚫ Delegatecall  attacks:  The  delegatecall 

function in Ethereum allows a contract to call 

another contract's function in the context of the 

calling contract. This can be exploited by an attacker 

who gains control over the called contract, enabling 

them to modify the state of the calling contract in 

malicious ways. 

⚫ Front-running attacks: Front-running attacks 

occur when an attacker observes a pending 

transaction and submits their own transaction with a 

higher gas price to ensure it is executed before the 

original transaction. This can be used to manipulate 

the outcome of trades, auctions, or other time- 

sensitive operations in a smart contract. 

 
Attack Techniques and Case Studies 

This section examines specific attack 

techniques and notable incidents that have occurred 

in the smart contract ecosystem. 

⚫ The DAO hack: The DAO (Decentralized 

Autonomous Organization) was a venture capital 

fund built on Ethereum in 2016. It suffered a major 

reentrancy attack, where the attacker exploited a 

vulnerability in the contract's withdrawal function to 

drain over 3.6 million Ether (worth around $50 

million at the time). The aftermath of the attack led 

to a controversial hard fork in the Ethereum network, 

resulting in the creation of Ethereum Classic 

[Toshendra]. 

⚫ Parity  wallet  vulnerability  In  2017,  a 

vulnerability in the Parity multisig wallet library 

contract was exploited by an attacker who managed 

to steal over 150,000 Ether (worth around $30 

million at the time). The vulnerability was related to 

an uninitialized owner variable in the library 

contract, which allowed the attacker to take 

ownership of the contract and subsequently drain the 

funds [OpenZeppelin]. 

⚫ Bancor protocol attack In 2018, the Bancor 

protocol, a decentralized exchange platform, 

suffered a security breach where an attacker 

exploited a permission flaw in one of the smart 

contracts. The attacker was able to call the contract's 

internal transfer function and bypass the token's 

standard ERC20 transfer restrictions. This resulted 

in the theft of over $23 million worth of tokens 

[Apriorit]. 

⚫ SpankChain attack In 2018, SpankChain, an 

adult entertainment platform built on Ethereum, lost 

around $38,000 in Ether due to a reentrancy attack. 

The attacker exploited a vulnerability in the 

platform's payment channel contract, which allowed 

them to repeatedly call the contract's withdrawal 

function and drain funds [Roan]. 

⚫ dForce exploit In 2020, dForce, a DeFi 

platform, suffered a loss of around $25 million due 

to an attack exploiting a vulnerability in the 

platform's lending protocol. The attacker utilized a 

combination of reentrancy and economic exploits, 

where they artificially inflated the value of a specific 

token and then used it as collateral to borrow other 

assets [Binance ]. 

⚫ bZx flash loan attack In 2020, bZx, a DeFi 

lending platform, was targeted in a series of attacks 

that resulted in a loss of over $1 million. The 

attackers utilized flash loans, a feature that allows 

users to borrow assets without collateral as long as 

they are returned within the same transaction. The 

attackers used these loans to manipulate the price of 

specific tokens on decentralized exchanges and 

profit from the price discrepancies in the bZx 

platform [CoinDesk]. 

 
Countermeasures 

To mitigate the risk of smart contract attacks, 

several countermeasures and best practices founded 

by us can be adopted during the development and 

deployment phases. 

⚫ Delegatecall is a powerful feature of the 

Ethereum platform that allows contracts to reuse 

code and modularize their functionality. It works by 

executing the code of the target contract in the 

context of the calling contract, which means that the 

target contract has access to the calling contract's 

storage, but its own storage is not affected. However, 

while delegatecall can greatly simplify contract 

development, it also introduces potential security 

vulnerabilities. When a contract executes a function 

using delegatecall, it essentially allows the target 

contract to execute any code it wants with the calling 

contract's state. This can lead to unexpected code 

execution and unintended changes to the calling 
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contract's state, which can result in security breaches 

and loss of funds. For example, if contract A has a 

function that performs a transfer of Ether, and 

contract B calls that function using delegatecall, 

contract B's storage will be used for the execution of 

the code, but the transfer will still be made from 

contract A's account. This means that anyone who 

can call the function in contract B can potentially 

manipulate the transfer and steal funds from contract 

A. To prevent these types of vulnerabilities, it is 

important to carefully review and test any contracts 

that use delegatecall, and to ensure that they are 

designed with security in mind. This includes 

implementing proper access controls, auditing any 

external contracts that are used with delegatecall, 

and limiting the functions that can be called using 

delegatecall to only those that are essential for the 

contract's functionality. By following best practices 

and being diligent in their code development and 

testing, developers can use delegatecall safely and 

effectively to build more efficient and modular 

contracts. 

⚫ Reentrancy is a common software 

development technique that allows a function to be 

called repeatedly before the original function 

execution is finished. While this technique can be 

useful for certain use cases, it also introduces 

potential security vulnerabilities, particularly in 

smart contract development. In a reentrancy attack, 

an attacker takes advantage of unprotected external 

calls to repeatedly call a function and drain all of the 

funds in a contract. This can be a particularly 

damaging exploit, leading to significant financial 

losses for the contract owner. To prevent reentrancy 

attacks, developers can implement a reentrancy 

guard, which is a modifier that causes execution to 

fail whenever a reentrancy act is detected. The guard 

prevents more than one function from being 

executed at a time by locking the contract, thereby 

protecting against reentrancy attacks. For example, 

a simple reentrancy guard can be implemented as 

follows: 

 

 
 

Fig. 1 
 

 
Reentrancy modifier example in solidity smart contract programming language. 

 

In this example, the noReentrancy modifier sets 

a locked flag to prevent multiple function executions 

and reverts execution if a reentrancy act is detected. 

The  vulnerableFunction  function  uses  the 

noReentrancy modifier to ensure that it can only be 

called once at a time, protecting against reentrancy 

attacks. By using a reentrancy guard, developers can 

help secure their smart contracts against reentrancy 
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attacks and ensure the integrity of their contract's 

functionality and funds. 

⚫ Solidity is a popular programming language 

used for smart contract development on the 

Ethereum blockchain. One of its global variables, 

tx.origin, returns the address of the original sender 

of a transaction. However, using tx.origin for 

authentication purposes can be dangerous and 

expose a contract to compromise if an authorized 

account calls into a malicious contract. To prevent 

tx.origin attacks, developers should avoid using 

tx.origin  for  authentication  and  instead  use 

msg.sender. msg.sender returns the address of the 

direct caller of the function, which is less susceptible 

to manipulation by malicious contracts. One key 

difference between tx.origin and msg.sender is that 

msg.sender can be a contract, while tx.origin can 

never be a contract. This means that msg.sender can 

be used to implement more complex authorization 

schemes, such as multi-signature wallets or contract- 

based access controls. For example, consider the 

following contract that uses msg.sender for 

authentication: 

 
 

Fig. 2 
 

 
Authentication example with msg.sender global variable. 

 

In this contract, the owner variable is set to 

msg.sender in the constructor, which ensures that 

only the address that deployed the contract can call 

the doSomething function. By using msg.sender 

instead of tx.origin, the contract is more secure and 

less susceptible to tx.origin attacks. In summary, 

developers should avoid using tx.origin for 

authentication purposes and instead use msg.sender. 

By doing so, they can help ensure the security of 

their contracts and protect against potential 

vulnerabilities. 

⚫ When choosing a visibility modifier for a 

function, it's important to consider the intended use 

and potential security implications. Failure to 

properly utilize visibility modifiers can lead to 

unintended state changes and make a contract 

vulnerable to attacks. Here's a brief explanation of 

each visibility modifier: Public: A public function 

can be accessed and called by any account or 

contract. This includes the main contract, derived 

contracts, and third-party contracts. Public functions 

are generally used to expose functionality to other 

contracts or external users. External: An external 

function can only be called by an external account or 

contract. This means that the function cannot be 

called by the main contract or any derived contracts. 

External functions are often used for utility functions 

that don't require access to the contract's state. 

Internal: An internal function can be called by the 

main contract and any of its derived contracts. This 
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means that the function is not accessible to external 

accounts or contracts. Internal functions are 

commonly used to implement contract functionality 

that is not intended for external use. Private: A 

private function can only be called by the main 

contract in which it was specified. This means that 

the function is not accessible to derived contracts or 

external accounts or contracts. Private functions are 

typically used for internal implementation details 

that should not be exposed to external users. It's 

important to note that functions in Solidity are by 

default set to public visibility. Developers should 

carefully consider which visibility modifier is 

appropriate for each function and explicitly set the 

visibility to the desired level. This can help prevent 

unintended state changes and ensure the security of 

the contract. 

⚫ In  the  Ethereum  blockchain,  block 

timestamps are commonly used for various purposes 

such as generating random numbers, locking funds 

for a specific time period, and implementing time- 

dependent conditional statements in smart contracts. 

However, block timestamps are not always reliable 

and can be subject to manipulation by validators, 

making it risky to use them in smart contracts. 

Validators have the ability to slightly alter 

timestamps, which can lead to inconsistencies and 

unpredictable behavior in smart contracts that rely 

on them. This can result in security vulnerabilities 

and financial losses for contract users. While it's 

possible to estimate the time difference between 

events using block.number and the average block 

time, relying solely on block timestamps for time- 

dependent operations in smart contracts is not 

recommended. Instead, developers should consider 

using alternative solutions such as block hashes or 

external time sources. For example, instead of using 

block timestamps to generate random numbers, 

developers can use block hashes to ensure a more 

secure and reliable source of entropy. Similarly, 

instead of using block timestamps for time- 

dependent conditional statements, developers can 

use external time sources such as an oracle or a 

trusted timestamping service. In summary, while 

block timestamps can be useful in smart contract 

development, their use can introduce potential 

security vulnerabilities. Developers should be aware 

of the risks associated with block timestamps and 

consider alternative solutions for time-dependent 

operations to ensure the security and reliability of 

their smart contracts. 

⚫ In Solidity versions prior to 0.8.0, integers 

were not wrapped, meaning that they would 

automatically roll over to a lower or higher number 

when they reached their maximum or minimum 

value. This behavior could cause unexpected results 

in code that relied on integer overflow or underflow. 

For example, if you decremented 0 by 1 (0 - 1) on an 

unsigned integer, the result would be the maximum 

value of that integer type instead of -1 or an error. 

This is because the integer would wrap around to its 

maximum value after underflowing. To avoid 

unexpected behavior and ensure the correctness of 

their code, developers should be aware of the 

potential risks associated with integer overflow and 

underflow and take steps to prevent them. One way 

to prevent integer overflow and underflow is to use 

the SafeMath library, which provides safe arithmetic 

operations for integers. For example, here's how you 

can use the SafeMath library to subtract 1 from 0: 



ՏԵՂԵԿԱՏՎԱԿԱՆ ՏԵԽՆՈԼՈԳԻԱՆԵՐ 

139 

 

 

Fig. 3 

SafeMath library usage example for solidit version 0.8.0. 
 

In this example, the SafeMath library's sub 

function is used to subtract 1 from an unsigned 

integer x. The function checks for underflow and 

throws an exception if it occurs, preventing 

unexpected results. By using safe arithmetic 

operations and avoiding the risks associated with 

integer overflow and underflow, developers can 

ensure the correctness and security of their smart 

contracts. 

 
Conclusion 

This paper has provided a comprehensive 

overview of smart contract vulnerabilities, attack 

techniques, and countermeasures. We have 

discussed common vulnerabilities, such as 

reentrancy attacks, arithmetic overflows, and 

timestamp manipulation. We also examined notable 

incidents like the DAO hack, Parity wallet 

vulnerability, and bZx flash loan attack, illustrating 

the real-world consequences of these vulnerabilities. 

The analysis presented in this paper highlights the 

importance of a security-first mindset for smart 

contract developers and users. By understanding the 

various attack vectors and implementing the 

recommended countermeasures, the risk of smart 

contract attacks can be significantly reduced. 

Developers should employ best practices, such as 

formal verification, static analysis, and fuzz testing, 

to identify and address vulnerabilities before 

deployment. Users should be cautious when 

interacting with smart contracts and consider the 

security measures implemented by developers. As 

the adoption of smart contracts continues to grow, 

ensuring their security becomes increasingly 

important. Future research should focus on 

enhancing security analysis tools, developing novel 

mitigation techniques, and exploring the potential of 

AI and machine learning for improving smart 

contract security. Additionally, as the blockchain 

ecosystem evolves, addressing challenges related to 

interoperability, privacy, and scalability will be 

crucial for the successful implementation and 

widespread adoption of smart contracts. 
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