
ՏԵՂԵԿԱՏՎԱԿԱՆ ՏԵԽՆՈԼՈԳԻԱՆԵՐ

141

DETECTING SEMICONDUCTOR DEFECT FEATURES AND

CLASSIFYING WAFER

https://doi.org/10.59982/18294359-23.14-ds-16

Garegin Sargsyan

Candidate of sciences in physics and mathematics

AMD ARMENIA

garegin.sargsyan.v@gmail.com

Artur Matevosyan

SYNOPSYS ARMENIA

artur.matevosyan99@gmail.com

Abstract

This scientific work focuses on the development of a software tool for semiconductor defect feature

detection and wafer classification. The tool utilizes advanced image processing techniques to extract

relevant information from semiconductor wafers and classify them based on their defects. The development

process involves the integration of various algorithms and machine learning models to optimize the tool's

performance. The results of the study demonstrate the effectiveness of the tool in accurately detecting and

classifying semiconductor defects, which can aid in improving semiconductor manufacturing processes and

reducing defects. The proposed software tool has the potential to become an essential tool for the

semiconductor industry and contribute to the advancement of semiconductor technology.

The aim of the work is to classify semiconductor disk (wafer) defects. The input data, presented in

tabular form, contains the coordinates of physical defects in the disk coordinate system, their sizes,

belonging to a particular production process. Based on the location of defects and their properties, the

processed software classifies disks into groups in order to clarify and eliminate further causes of damage.

Keywords: wafer, C++, microelectronic, wafer defect.

Introduction

A wafer is a round plate made of silicon

material. There are square elements on the wafer,

each of which represents a microcircuit. That square

element is called the Die, which is the chip that

provides the functionality. There are different steps

in the production of a microcircuit and at each step

some layer of the microcircuit is added and defects

may occur in that layer. Defects may occur for

various reasons. This may be due to particles in the

outer atmosphere or to the device in which we are

trying to place the plate, etc. Defects cause

disruptions in the functionality of microcircuits and

these microcircuits are quite expensive. For this, it is

necessary to be able to fix the defect very quickly

and automatically. The aim of the work is to create

a software for classifying plates with a defect in real

time, from which we can understand the cause of the

defect. An algorithm is any well-defined sequence of

computational operations, the input of which is a

certain value or a set of values, and the result is a

certain output value or a set of output values. In other

words, an algorithm is a sequence of computational

operations that transforms input data into output

data. The algorithm can also be considered as a tool

designed to solve a well-posed computational

problem. The problem setting usually specifies the

relationship between input and output data; an

algorithm describes the exact process by which a

relationship between input and output is achieved.

There can be many algorithms for solving the

given problem and they can be so different from

each other that one of them can solve the required

problem more efficiently than the other. Therefore,

it is important to choose the most efficient of the

available algorithms. To evaluate the efficiency of

http://eua-collection.am/hy/647-2/
mailto:garegin.sargsyan.v@gmail.com
mailto:artur.matevosyan99@gmail.com

ՏԵՂԵԿԱՏՎԱԿԱՆ ՏԵԽՆՈԼՈԳԻԱՆԵՐ

142

the algorithm, a sufficiently large amount of input

data is given to the input of the algorithm in order to

observe the growth rate of the algorithm

performance time. The latter is also called the

asymptotic efficiency of the algorithm. This means

that we are interested in the finite performance time

of the algorithm when the size of the input data tends

to infinity. Usually, an asymptotically more efficient

algorithm is more productive for all but very small

input sets. The designations in estimating the

asymptotic running time of algorithms use functions

whose domain of definition is the set of natural

numbers.

Conflict setting

These designations allow to estimate the worst-

case performance time of the algorithm using a

function defined only for natural numbers, which is

the size of the input data.

θ — designation

For some function g(n), θ(g(n)) denotes the set

of such functions:

ƒ(n): there exist positive constants c1, c2 and n0 numbers,
θ(g(n)) = { } (1)

such as 0 ≤ c1 ∗ g(n) ≤ ƒ(n) ≤ c2 ∗ g(n) ƒor all n ≥ n0

ƒ(n) function f(n) belongs to the set θ(g(n)) if

there are such positive constants c_1,c_2 that allow

this function to include in the bounds c1 ∗ g(n) և

c2 ∗ g(n) for sufficiently large n.

Օ — designation

θ designation determines the asymptotic upper

and lower bounds of the algorithm. If for the given

problem it is necessary to know only the asymptotic

upper bound, then we can use the designation O: For

some function g(n), O(g(n)) denotes the set of

such functions:

ƒ(n): there exist positive constants c and n0 numbers,
O(g(n)) = {

such as 0 ≤ ƒ(n) ≤ c ∗ g(n) ƒor all n ≥ n0

} (2)

O designation is used when it is necessary to

show the upper bound of the algorithm performance

with constant accuracy.

Ω — designation

In a similar way, as the designation O is

intended to estimate the upper bound of the

algorithm performance, the designation Ω

determines the lower bound of the algorithm

performance. For some function g(n), Ω(g(n))

denotes the set of such functions:

ƒ(n): there exist positive constants c and n0 numbers,
Ω(g(n)) = {

such as 0 ≤ c ∗ g(n) ≤ ƒ(n) ƒor all n ≥ n0
} (3)

For arbitrary 2 g(n) and ƒ(n) functions ƒ(n) =

θ(g(n)) only if ƒ(n) = O(g(n)) and ƒ(n) =

Ω(g(n)):

Decoding the input file. Translators

In the first phase of the program, the user

imports an input file that needs to be decoded and

rendered, specifying the necessary settings. That’s

why, it is necessary to implement a translator that

will check the correctness of the input file, extracting

from it the information necessary for the program in

any format. For this purpose, in various problems,

special software tools - interpreters - are used, in

order to check the specific file or description of the

given problem.

General structure of the project

It was appropriate to use the MVC (Model-

View-Controller) design pattern [Straustrup, 450] to

implement the project. It is a software design pattern

that makes data processing independent of the user

interface. Like all design patterns, MVC is only a

ՏԵՂԵԿԱՏՎԱԿԱՆ ՏԵԽՆՈԼՈԳԻԱՆԵՐ

143

problem-solving principle, and modified versions of

MVC can be used to solve each specific problem.

The template consists of 3 main parts [Cormen,

637]:

1. Model - provides program work with data,

logic

2. View/Presentation - is responsible for

building the appearance of the program with which

the user works.

3. Steering part - provides a link between the

model and the view.

Operation of the software algorithm. The block

diagram of the algorithm of the processed software

is presented below (Pic. 1).

Pic. 1

Block diagram of the processed algorithm.

The software tool starts its work by receiving

data in the form of a file (Pic 2). This file contains

the name of the Lot, the name of the wafer in this

Lot and the coordinates of the corresponding

defects. Then the availability and reliability of the

necessary data are checked, because without them

the program cannot work. If the requirements are

met, the algorithm starts its work.

ՏԵՂԵԿԱՏՎԱԿԱՆ ՏԵԽՆՈԼՈԳԻԱՆԵՐ

Pic.

144

144

Sample of an input file

The data from the input file is read with the help

of the interpreter and after checking the accuracy of

the data, it is added to the content of the Container

[Stephen, 83]. After that, the wafer and the

coordinates of its defects are displayed in the

coordinate field in the form of a matrix. Then, the

types of wafer defects are defined. These include:

notch, straight line, oblique line, point defects,

random scattered defects, evenly distributed defects,

concentrated defects. The detection of these defects

is performed in the coordinate field according to the

coordinates of the given wafer defects. In addition,

the wafer is divided into 6 parts.

The division of the wafer into parts is done in

order to understand in which part the majority of

defects in the wafer are concentrated. Through this

division, we can understand the distribution of

defects [Melikyan et al.,71], that is, if the

coordinates of all the defects of the wafer are

concentrated in only one of those 6 divided parts,

then we can say that the wafer has a concentrated

defect, and it is indicated in which part they are

concentrated. Or, for example, in the case of an

evenly distributed defect, all 6 divided parts contain

the same number of defects. Thus, at the end, the

Bayesian classification algorithm is applied, and

through it the probability of each defect indicated in

the wafer is calculated, and the type of defect with

the highest probability is assigned to the given

wafer.

Thus, at the end, in the content of the Container,

we have the names of the Lots and the corresponding

wafers in them, with their names and the types of

received defects. After that, these data are displayed

in a table, which already represents the graphic part

[Qt Online Documentation]

The provided graphic interface allows to see the

final table obtained as a result of the work of the

defect detection algorithm, where the names of the

columns are the names of the types of defects, and

the names of the Lot and the wafer containing the

given defect are written in the cells of the table.

This table also helps us to understand where

most of the defect coordinates are concentrated in

the wafer.

In this graphic part, it is also possible to see the

picture of the wafer we want with its defect

coordinates. To see it, you need to click on the cell

containing the name of our preferred Lot, wafer and

click on “show” button below. The window of the

following picture will open (Pic. 3).

ՏԵՂԵԿԱՏՎԱԿԱՆ ՏԵԽՆՈԼՈԳԻԱՆԵՐ

145

Wafer with its defect coordinates

Pic. 3

Conclusion

It was processed and implemented an

algorithm, a software tool, which enables to detect

what defect the wafer contains. It was researched the

necessary literature to write and implement a wafer

defect detection algorithm. It was implemented a

wafer defect detection algorithm and its optimized

version, which are the basis of the program's work.

The program provides a graphical interface, as well

as tools for working with it, which contribute to the

user's comfort. The work was carried out using the

C++ programming language in the Qt environment

for Windows and Linux operating systems.

Furthermore, the proposed software tool is scalable

and can be integrated into existing semiconductor

manufacturing processes, making it a cost-effective

solution for the industry. The tool can be used for

both research and production purposes, enabling

manufacturers to improve their understanding of

semiconductor defects and optimize their

manufacturing processes.

In summary, the proposed software tool has

shown great potential for the semiconductor

industry, as it offers an effective and efficient

solution for detecting and classifying defects in

semiconductor wafers. Future work could focus on

further refining the tool's performance and

expanding its capabilities to cover a broader range of

semiconductor defect types.

ՏԵՂԵԿԱՏՎԱԿԱՆ ՏԵԽՆՈԼՈԳԻԱՆԵՐ

146

References

1. Melikyan V. Sh., A.G. Harutyunyan, A.A. Gevorgyan. Methods of physical design of

microelectronic circuits. 2015, p.173

2. Stephen Prata, C++ Primer Plus (Developers Library), Sixth Edition, USA, Addison-Wesley

Professional, November 25, 2013, p.268

3. Straustrup B., The C++ Programming Language, Third Edition, AT&T ed, USA, 1997, p.571

4. Thomas H. Cormen. Introduction to Algorithms, Third Edition, The MIT

Press, London, England, 2009, p.1037

5. Qt Online Documentation. 29.march.2023, https://doc.qt.io/

Ներկայ ացվել է՝

29.03.2023թ. Ուղարկվել է

գրախոսման՝ 05.05.2023թ.

	https://doi.org/10.59982/18294359-23.14-ds-16
	Artur Matevosyan
	Abstract
	Introduction
	Conflict setting
	Pic. 1
	Pic. 3
	References

